
1.  Introduction
In the Western United States, there is a need for balance between reducing the hazards of wildland fires while 
maintaining forest health under the influence of a changing climate. Unless we can better understand and pre-
dict the deleterious impacts of wildland fire smoke emissions on air quality and human health, it will be nearly 

Abstract  Accurate fire emissions inventories are crucial to predict the impacts of wildland fires on air 
quality and atmospheric composition. Two traditional approaches are widely used to calculate fire emissions: 
a satellite-based top-down approach and a fuels-based bottom-up approach. However, these methods often 
considerably disagree on the amount of particulate mass emitted from fires. Previously available observational 
datasets tended to be sparse, and lacked the statistics needed to resolve these methodological discrepancies. 
Here, we leverage the extensive and comprehensive airborne in situ and remote sensing measurements 
of smoke plumes from the recent Fire Influence on Regional to Global Environments and Air Quality 
(FIREX-AQ) campaign to statistically assess the skill of the two traditional approaches. We use detailed 
campaign observations to calculate and compare emission rates at an exceptionally high-resolution using 
three separate approaches: top-down, bottom-up, and a novel approach based entirely on integrated airborne 
in situ measurements. We then compute the daily average of these high-resolution estimates and compare 
with estimates from lower resolution, global top-down and bottom-up inventories. We uncover strong, linear 
relationships between all of the high-resolution emission rate estimates in aggregate, however no single 
approach is capable of capturing the emission characteristics of every fire. Global inventory emission rate 
estimates exhibited weaker correlations with the high-resolution approaches and displayed evidence of 
systematic bias. The disparity between the low-resolution global inventories and the high-resolution approaches 
is likely caused by high levels of uncertainty in essential variables used in bottom-up inventories and imperfect 
assumptions in top-down inventories.

Plain Language Summary  Smoke emitted by wildland fires is dangerous to human health and 
contributes to climate change. To predict and evaluate the impacts of fires, we need to know how much smoke 
is emitted into the atmosphere. There are two state-of-the-art methods used to estimate the mass of smoke 
emitted by fires, but they often disagree. In this study, we use unusually detailed measurements collected using 
an aircraft that flew within wildland fire smoke plumes to calculate the amount of smoke emitted from fires in 
the Western United States. We compare emission rates derived from the exceptionally high spatial and temporal 
resolution approach to the two traditional, lower resolution approaches to understand why they sometimes 
diverge.
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Key Points:
•	 �In situ measurements of wildland fire 

smoke plumes provide emission rates 
for evaluating emissions inventories at 
unprecedented resolution

•	 �Fire emissions inventories struggle 
to capture the emissions rate 
characteristics of individual fires but 
may perform well in the aggregate

•	 �Bottom-up inventories suffer from 
major uncertainty in key variables, 
while top-down inventories may have 
bias from imperfect assumptions
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impossible for society to respond and adapt to this evolving and complex system. Informed land management 
policy that utilizes prescribed fires to reduce fuel buildup and reinvigorate ecosystems in order to ultimately mini-
mize smoke exposure for downwind communities necessitates the ability to quantify the composition, magnitude, 
and transport of smoke (Noss et al., 2006; Schweizer et al., 2018). In the case of accidental or uncontrolled wild-
fires, the capability to accurately predict smoke transport is necessary to alert sensitive populations and mitigate 
the overall impact of smoke on human health (Larkin et al., 2009; McKenzie et al., 2006). Atmospheric models 
rely entirely on databases of fire locations and estimated emissions (so-called fire emissions inventories) to rep-
resent the contribution of fire emissions to downwind atmospheric composition (Wiedinmyer et al., 2006). These 
inventories exist as both real-time or operational emissions inventories and retrospective global and regional 
inventories, depending on their intended purpose. Two distinct approaches are traditionally used to create these 
emissions inventories: a fuel accounting based “bottom-up” approach and an energy based “top-down” approach 
(Seiler & Crutzen, 1980; Wooster et al., 2005).

Here, we define all energy-based approaches as top-down and all fuel accounting based approaches as bottom-up. 
However, it should be noted that energy based fire emissions inventories may be categorized as bottom-up or top-
down according to the nature of the observations from which their emission factors (or coefficients) are derived. 
Bottom-up emission factors are derived through laboratory or field experiments at a number of discrete locations 
representative of different fuel types, and then generalized for use in global or regional applications, whereas top-
down emission factors are based on global or regional measurements of the appropriate emissions species such as 
aerosols from satellite, and are used to constrain emissions locally, regionally or globally.

The bottom-up, fuel accounting based approach calculates the mass of carbon emitted by a fire as the product 
of burned area, fuel mass per unit area, the carbon fraction of fuel, and combustion completeness (Seiler & 
Crutzen, 1980). This approach, also known as the carbon mass balance method, most commonly operates under 
the explicit assumption that all burnt biomass carbon is volatilized and emitted to the atmosphere (Surawski 
et al., 2016; Ward & Radke, 1993). Although a fuels-based approach is the key feature of bottom-up algorithms, 
most also rely on remote sensing observations from satellite sensors such as the Moderate Resolution Imaging 
Spectroradiometer (MODIS) or Visible Infrared Imaging Radiometer Suite (VIIRS) to determine burned area. 
Burned area can be calculated using active fire detections, by assuming the entire landscape captured in the reso-
lution of a single satellite pixel burned, or burned area can be taken directly from higher level data products (Kai-
ser et al., 2012; Van Der Werf et al., 2017; Wiedinmyer et al., 2011). Fuel mass per unit area is often derived from 
either a biogeochemical model initialized with satellite observations and/or from fuel databases of fuel type and 
loading (McKenzie et al., 2012; Pettinari & Chuvieco, 2016; Sandberg et al., 2001; Van Der Werf et al., 2017). 
Fuel carbon content is often assumed based on laboratory measurements from previous studies or estimated using 
the sum of CO2, CO, and CH4 emission factors (Akagi et al., 2011; McMeeking et al., 2009; Santín et al., 2015; 
Susott et al., 1991; Van Der Werf et al., 2017; Yokelson et al., 1997). Combustion completeness is calculated as a 
function of changes in landscape characteristics, fuel moisture, summer land surface temperature, tree cover, and/
or daily fire weather indices (Kaiser et al., 2012; Michalek et al., 2000; Ottmar, 2014; Van Der Werf et al., 2017; 
Wiedinmyer et al., 2011).

The bottom-up approach requires an ecosystem-specific emission factor to convert total carbon mass emissions 
to emissions of a particular trace gas or aerosol species (Akagi et al., 2011; Andreae & Merlet, 2001). Emission 
factors are often attained from compilations of previous studies categorized by fuel or vegetation type and show 
a wide range of natural variability depending on the exact composition of fuel being burned and combustion con-
ditions (Prichard et al., 2020). Certain species, including many volatile organic compounds (VOCs) and aerosols, 
rapidly evolve in the atmosphere following emission, which necessitates emission factor estimates derived only 
from measurements of young, fresh smoke (Garofalo et al., 2019). There are numerous particulate mass (PM) 
emission factors published from in situ ground measurements of prescribed burns and laboratory based studies, 
however in situ airborne measurements of PM emission factors for Western US wildland fires are particularly 
scarce (Akagi et al., 2011).

The top-down or energy based approach follows from Wooster et al. (2005), who showed that the burning of dry 
vegetation yields the same amount of energy, regardless of fuel type. Top-down inventories assume fire radiative 
power (FRP) observations from satellite remote sensing can be used as a direct measurement of the amount of 
biomass consumed in a fire in an effort to bypass the latency and uncertainty associated with variables required 
in bottom-up style inventories (Ichoku & Kaufman, 2005). In the top-down approach, FRP is multiplied by a 
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predetermined coefficient, known as a smoke emission coefficient (Ce), to calculate fire emission rates of PM. 
Smoke emission coefficients are constants derived for individual ecosystems by combining multiple years of 
aerosol optical depth (AOD) remote sensing observations with a mass extinction efficiency (MEE), a constant 
that relates particle extinction to particle mass (Giglio et al., 2006; Ichoku et al., 2008; Kaiser et al., 2012). FRP 
and AOD observations from the MODIS instrument operating on the polar orbiting Terra and Aqua satellites are 
commonly used in top-down approaches. MODIS provides daily global coverage of FRP observations at 1 km 
resolution and AOD observations at 3 and 10 km resolutions at nadir (Freeborn et al., 2014; Remer et al., 2005; 
Wei et al., 2020). Ichoku et al. (2008) demonstrated that the relationship between fire radiative energy (FRE or 
temporally integrated FRP) and total PM emissions could be quantified using AOD during a controlled laborato-
ry-based experiment where multiple fuel types were burned and measurements were collected over the duration 
of each fire. The smoke emission coefficient determined from the laboratory-based experiment agrees with in-
dependent estimates derived from satellite measurements of FRP and AOD measured over large-scale wildfires, 
which leads to the assumption that this approach can be extrapolated to global scale observations of FRP and 
AOD (Ichoku et al., 2008).

There are dozens of top-down and bottom-up emissions inventories available for use in atmospheric transport 
models. These inventories encompass wide ranges of spatial and temporal scales and can be used to account for 
hundreds of individual pollutants emitted by fires (Darmenov & da Silva, 2013; Ichoku & Ellison, 2014; Kaiser 
et al., 2009; Mota & Wooster, 2018; Van Der Werf et al., 2017; Wiedinmyer et al., 2011). The choice of which 
inventory to use in modeling applications is crucial, because different fire emissions inventories can profound-
ly disagree on the magnitude, composition, and temporal variability of fire emissions, especially PM (Carter 
et al., 2020; Larkin et al., 2014; Liu et al., 2020; Pan et al., 2020). The underlying cause of the disagreement is 
difficult to isolate, but could be due to uncertainty or error in the various assumptions used in each inventory. 
Most global emissions inventories are plagued with high levels of uncertainty stemming from the individual 
datasets used to calculate emissions, which further complicates the ability to isolate the cause of the discrepan-
cies among inventories (French et al., 2004; Urbanski et al., 2011; Wiedinmyer et al., 2011). For example, the 
detection and quantification of active fire locations, FRP, and AOD using satellite remote sensing suffers from 
the obscuration of the land surface by clouds or thick smoke, limited spatiotemporal coverage or resolution, and 
instrument detection limits.

It is fundamentally challenging to correctly quantify biomass burning emissions due to the highly variable com-
position and structure of the fuels that fires consume, and because fires can rapidly change their behavior in 
response to dynamic meteorological or environmental conditions (Kennedy et  al.,  2020; Liu,  2004; Prichard 
et al., 2019; Schultz et al., 2008). The datasets used in global fire emissions inventories attempt to capture these 
dynamics, but they often lack the spatial and temporal resolution needed to fully encapsulate all of the indi-
vidual components that influence emissions. Intensive measurements of smoke from the joint NASA/NOAA 
Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign that was conducted 
during the summer of 2019 provide a unique opportunity to evaluate the assumptions and uncertainties in both 
top-down and bottom-up approaches for calculating fire emissions. During FIREX-AQ, the NASA DC-8 aircraft 
was outfitted with a comprehensive instrument payload that sampled smoke plumes from Western US wildland 
fires and Southeastern US prescribed and agricultural fires. The plume sampling strategy for the western portion 
of the campaign consisted of an above-plume, longitudinal run along the entire length of the plume to allow for 
nadir-pointing remote sensing of the smoke followed by a set of plume transects perpendicular to the direction of 
smoke transport where the aircraft sampled the plume in situ during a series of sequentially downwind, cross-sec-
tional passes (Wiggins et al., 2020).

Measurements collected during FIREX-AQ provide the opportunity for a rare direct comparison and evalua-
tion of the traditional, lower resolution approaches to calculate fire emissions at an unusually high spatial and 
temporal resolution. We utilize FIREX-AQ smoke plume measurements to calculate total carbon and total PM 
emission rates from Western US wildland fires using three separate high-resolution approaches. We first calculate 
fire emission rates from fires sampled during FIREX-AQ using a novel, independent approach based on direct 
observations. We further capitalize on FIREX-AQ data to calculate fire emission rates using a high-resolution 
top-down approach and a high-resolution bottom-up approach. The high-resolution top-down approach (referred 
to as HSRL-GOES) uses airborne HSRL measurements of particle extinction to calculate aerosol optical thick-
ness (AOT) instead of satellite observations of AOD, and the high-resolution bottom-up approach (referred to as 
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Fuel2Fire) uses carbon emission estimates from the newly developed Fuel2Fire carbon emissions inventory that 
has been developed and optimized specifically to estimate emissions from the fires sampled during FIREX-AQ. 
We also obtain emission rates from a traditional bottom-up fire emissions inventory, Global Fire Emissions Da-
tabase (GFED4.1s), and a traditional top-down fire emissions inventory, Fire Energetics, and Emissions Research 
(FEERv1.0). GFED and FEER have much lower temporal and spatial resolutions (3-hr/daily at 0.25° and daily at 
0.1°, respectively) compared to the three high-resolution FIREX-AQ based approaches.

We evaluate the performance of GFED and FEER, along with the high-resolution top-down and bottom-up ap-
proaches, against the in situ measurement based approach to investigate potential bias and assess the validity of 
the assumptions unique to each approach (Figure 1). We also investigate and quantify uncertainty for all of the 
approaches used to calculate emission rates in this study. The goal of this paper is to understand how the estimates 
of total carbon and total PM emission rates from traditional, lower resolution methods compare to the high-res-
olution estimates available for the fires sampled during the FIREX-AQ campaign. The results of this analysis 
should be of keen interest for the global wildfire emissions inventory community as well as atmospheric scientists 
seeking to use airborne observations to constrain wildland fire aerosol emissions.

2.  Methods
2.1.  Emission Rate Estimates From Global Inventories

2.1.1.  GFED4.1s (Low-Resolution Bottom-Up)

GFED is a global fire emissions inventory that internally calculates carbon emission rates using a traditional 
bottom-up (fuels-based) approach as follows

𝐸𝐸𝐶𝐶 = BA × FL × CC × 𝐹𝐹𝐶𝐶� (1)

Figure 1.  Conceptual image of a typical wildland fire and smoke plume observed during Fire Influence on Regional to 
Global Environments and Air Quality (FIREX-AQ) as well as the observational platforms and analysis approaches. The 
DC-8 flight track is given in red and colored by in situ particle concentrations for the cross-sectional legs. As described in the 
text, the DC-8 initially completes a longitudinal run where the nadir High-Spectral Resolution Lidar (HSRL) measurement 
provides the full smoke curtain below the aircraft, which is then followed by a series of successively downwind flight legs 
where the nadir- and zenith-pointing HSRL curtains are used to contextualize the cross-sectional, in situ measurements. 
Image credit: NASA/Tim Marvel.
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where EC is the carbon mass emission rate per day, BA is the burned area, FL is the fuel mass loading per area, CC 
is the combustion completeness (expressed as a percent), and FC is the mass fraction of carbon in the fuel (Van 
Der Werf et al., 2017). GFED obtains burned area estimates from MODIS (MCD64A1), fuel loading and com-
bustion completeness are derived from the Carnegie-Ames-Stanford Approach (CASA) biogeochemical model, 
and carbon mass fraction is defined per ecosystem from compilations of previous studies (Akagi et al., 2011; 
Andreae & Merlet, 2001; Van Der Werf et al., 2017).

To represent a traditional bottom-up approach, we use daily average carbon emission rates per area from GFED-
4.1s (https://www.globalfiredata.org/) to calculate daily average PM emission rates (EPM) for the western fires 
sampled during FIREX-AQ as follows

𝐸𝐸PM = EFPM ×
∑ 𝐸̂𝐸𝐶𝐶 × 𝐴𝐴P,GFED

𝐹𝐹𝑐𝑐
� (2)

where EFPM is the total particulate matter mass emission factor suggested by GFED for temperate forests 
(17.6 gPM kg-biomass consumed−1), 𝐴𝐴 𝐸̂𝐸𝐶𝐶 is the area-normalized daily carbon emissions in each GFED pixel, 
AP,GFED is the GFED pixel area (0.25° × 0.25°), and the summation is carried out over all GFED pixels within 
0.25° of the centroid of the final fire perimeter for each fire. The final fire perimeters were derived from the 
United States Geological Survey Geospatial Multi-Agency Coordination Group (GeoMAC) mapping applica-
tion hosted by the National Interagency Fire Center (https://data-nifc.opendata.arcgis.com/datasets/historic-pe-
rimeters-2019) (Walters et al., 2011). In Equation 2, we use the FC suggested by GFED for temperate forests 
(0.489 kgC kg-biomass consumed−1). The use of ecosystem level constant values for EFPM and FC is intended to 
provide good results in aggregate on the regional-to-global scales required by models, although individual fires 
will deviate from these specifications. GFED data are provided on a daily and a 3-hr basis in UTC time, and here, 
we use the daily product. We convert from UTC time to local time by assuming daily emissions (local time) are 
equal to 75% of the emissions from the day a given fire was sampled by the DC-8 aircraft (local time) plus 25% 
of the emissions from the day after (local time).

We estimate relative uncertainty in EC and EPM estimates derived from GFED by propagating uncertainty through 
Equations 1 and 2. For Equation 1, we assume the following relative uncertainties: BA = 44%, FL = 111%, 
CC = 11%, and FC = 10%. For Equation 2, we assume EFPM has a relative uncertainty of 36% and EC has a rel-
ative uncertainty calculated by propagating uncertainty through Equation 1. We obtain the relative uncertainty 
in the BA product used by GFED from an analysis of MODIS burned area by Giglio et al. (2018). FL and CC 
relative uncertainty are derived by taking the standard deviation divided by the average for all field measurements 
of Western US fuels as compiled by van Leeuwen et al. (2014) and updated by Van Der Werf et al. (2017). FC 
relative uncertainty is defined as the standard deviation divided by the average in FC values given by Akagi 
et al. (2011). The relative uncertainty in EFPM is calculated as the standard deviation divided by the average of 
EFPM derived from all previous studies of temperate forest EFPM measurements used in GFED (Akagi et al., 2011; 
Andreae & Merlet, 2001; Van Der Werf et al., 2017). The calculated relative uncertainty in GFED EPM is 126% 
and EC is 120% (Table S1).

2.1.2.  FEERv1.0 (Low-Resolution Top-Down)

FEER is a global fire emissions inventory that calculates daily average EPM using a traditional top-down (ener-
gy-based) approach as

𝐸𝐸PM = 𝐶𝐶𝑒𝑒 × FRP� (3)

where Ce is an ecosystem-dependent predetermined smoke emission coefficient, and FRP observations are from 
MODIS. FEER derives Ce using multiple years of coupled MODIS AOD (550 nm) and FRP observations and an 
assumed constant MEE at 550 nm of 4.6 m2 g−1 derived from previous studies (Reid, Eck, et al., 2005). Smoke 
emission coefficients have been predetermined by FEER and are provided globally at a 1° × 1° resolution (https://
feer.gsfc.nasa.gov/projects/emissions/) (Ichoku & Ellison, 2014).

Daily average EPM estimates are provided at a 0.1° × 0.1° resolution through a coupling of FEER smoke emission 
coefficients and MODIS FRP observations (FEERv1.0-G1.2). For the traditional top-down approach, we calcu-
late daily average EPM estimates for each of the western fires sampled during FIREX-AQ as

https://www.globalfiredata.org/
https://data-nifc.opendata.arcgis.com/datasets/historic-perimeters-2019
https://data-nifc.opendata.arcgis.com/datasets/historic-perimeters-2019
https://feer.gsfc.nasa.gov/projects/emissions/
https://feer.gsfc.nasa.gov/projects/emissions/
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�PM =
∑

�̂PMFEER × �P,FEER� (4)

where 𝐴𝐴 ÊPM𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 is the area-normalized daily average EPM from each FEER pixel, and 𝐴𝐴 𝐴𝐴P,FEER is the FEER grid cell 
area (0.1° × 0.1°). The summation is over all FEER grid cells per fire. FEER grid cells are included if they are 
within 0.1° of the centroid of the final GeoMAC fire perimeter for each fire. We convert from UTC time to local 
time following the same approach described in Section 2.1.1. We also calculate the average FEER Ce for the fires 
sampled during the western portion of the FIREX-AQ campaign as the average of all Ce estimates in every 1° grid 
cell that encompassed at least a fraction of the final GeoMAC perimeter of a fire.

We estimate relative uncertainty in FEER EPM estimates by propagating uncertainty through Equation 3. We cal-
culate the relative uncertainty of Ce as the standard deviation divided by the mean of all extracted FEER Ce values 
used in this analysis, and we obtain the relative uncertainty of MODIS FRP from Freeborn et al. (2014). FEER 
Ce for Western US wildland fires has a relative uncertainty of 73% and MODIS FRP has a relative uncertainty of 
27%, yielding a relative uncertainty in FEER EPM of 78% (Table S1).

2.2.  Emission Rate Estimates From FIREX-AQ

2.2.1.  In Situ Measurement Approach (High Resolution)

We capitalize on the intensive, high spatial and temporal resolution smoke plume measurements from the DC-8 
aircraft during FIREX-AQ to calculate EC and EPM via a novel in situ measurement-driven approach. Here, we 
integrate in situ trace gas and aerosol measurements with information on plume thickness derived from airborne 
High-Spectral Resolution Lidar (HSRL) measurements to calculate emission rates. Although this new approach 
is subject to its own uncertainties and sources of error, we assume emission rate estimates derived from this 
approach are as close to accurate as we can realistically achieve, because they are based on in situ measure-
ments, and their calculation does not require as many assumptions as the traditional approaches. We assume fire 
emission rates over time are equal to the flux of smoke as it passes through a vertical slice of the smoke plume, 
represented as an HSRL curtain measured during in situ transects (Figure 1). We calculate EC and EPM for each 
wildland fire sampled during FIREX-AQ on a sub-plume (per transect) basis as

�� = WS × GS ×
∑�end

�start
Δ�� ×��Δ�� (5)

where Ex is the emission rate of species X (either carbon or PM), WS is the transect average wind speed, GS is the 
transect average ground speed, 𝐴𝐴 Δ𝑋𝑋𝑡𝑡 is the excess concentration of species X averaged over 10 s intervals to match 
the horizontal resolution of the HSRL data collected at aircraft measurement time t, and Ht (m) is the plume thick-
ness measured by the nadir and zenith pointing HSRL profiles at aircraft measurement time t (Hair et al., 2008). 
This approach assumes that the vertical distribution of each species is uniform, and the lidar is used to find the 
vertical extent of the plume. Horizontal plume boundaries are defined as having a minimum enhancement in 
CO of 200 ppbv above background concentration. The ground speed averaged across all fires and all transects 
is 152 ± 11 m/s. Excess concentrations are calculated by subtracting a background concentration defined as the 
average concentration 5–10 s prior to the start of the transect and 5–10 s after the end of the transect. In a few 
cases, the PM background is elevated during the time interval used to define a background such that the excess 
mixing ratio is computed as a negative value, and these cases are excluded from the analysis. The time interval 
from tstart to tend is equal to the length of time to complete each transect, and 𝐴𝐴 Δ𝑡𝑡 is ∼10 s, which is the horizontal 
resolution of the HSRL data. Ht is calculated as the sum of HSRL profile bin heights (𝐴𝐴 Δ𝑧𝑧𝑡𝑡 ) where the particle 
backscatter coefficient at 532 nm (𝐴𝐴 𝐴𝐴𝑡𝑡 ) is greater than 1 km−1 sr−1, which was larger than the average background 
scattering and defined the smoke plume edges for the cases sampled.

�� =
∑z=∞

z=0
Δ��[�� > 1 km−1 sr−1]� (6)

In exceptionally dense smoke plumes, the HSRL laser light was fully attenuated before it could completely pass 
through the smoke plume edge, and for these cases we assume the smoke plume extended to the surface and 
neglect the missing portion of the plume above the aircraft. This approach is reasonable as the aircraft tended to 
sample the smoke plumes near the top of the atmospheric boundary layer, which places a weak upper constraint 
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on the top of the plume just as the surface places a lower constraint on boundary layer mixing processes. An 
alternative approach to calculate plume thickness using HSRL observations leverages the ratio of the backscatter 
coefficient in a single HSRL bin to the sum of all backscatter coefficients in a vertical column. We estimate the 
sensitivity of plume thickness to these two approaches and discover strong agreement (slope = 0.72, r = 0.83), 
although the alternative approach estimates slightly lower plume thickness on average (Figure S1). We ultimately 
choose to calculate plume thickness as outlined in Equation 6 in an effort to avoid additional uncertainty from 
relying more heavily on the backscatter coefficient, which may be confounded by changes in aerosol size and/or 
optical properties rather than mass loading.

Total PM is calculated as the sum of organic aerosol (OA), sulfate, nitrate, ammonium, and black carbon aerosol 
(BC) reported at standard temperature and pressure conditions and converted to ambient volumetric units. All 
components of the submicron non-refractory total PM concentrations are measured using an Aerodyne Time of 
Flight Aerosol Mass Spectrometer (ToF-AMS) (Canagaratna et al., 2007; DeCarlo et al., 2006; Guo et al., 2021). 
Refractory BC mass concentrations are provided by a Single Particle Soot Photometer (SP2, Droplet Measure-
ment Technologies) (Gao et al., 2007). The 50% geometric transmission diameter for the ToF-AMS is ∼600 nm, 
which sufficiently captures the size range for the majority of biomass burning derived particles, with the excep-
tion of supermicron ash particles (Adachi et al., 2021; Moore et al., 2021). Total carbon is calculated as the sum 
of CO2, CO, CH4, organic carbonaceous aerosol (OC), and BC aerosol. OC is estimated using the OA to OC 
ratio provided by the ToF-AMS. The CO2 mixing ratio measurements are obtained using a non-dispersive infra-
red (IR) spectrometer (LICOR, Inc. Model 7000) adapted for aircraft measurements in a method similar to Vay 
et al. (2003), while CO and CH4 mixing ratios are obtained from mid-IR laser absorption spectrometry (Sachse 
et al., 1991). All three trace gas species were calibrated in-flight with standards from the National Oceanic and 
Atmospheric Administration Earth Science Research Laboratories (NOAA ESRL) traceable to World Meteoro-
logical Organization (WMO) scales. The trace gas measurements were converted from mole fractions to ambient 
volumetric units by multiplying the mixing ratio by the ratio of the molecular weight to the molecular volume at 
ambient temperature and pressure conditions.

We estimate relative uncertainty in EC and EPM using Equations 5 and 6. We calculate the following relative 
uncertainties: WS = 20%, GS = 3%, Ht = 28%, ΔC = 56%, and ΔPM = 67%. The relative uncertainty for each 
variable is assumed to be equal to the mean divided by the standard deviation of observations collected during 
all smoke plume transects. The computed relative uncertainty in EC is 66% and the relative uncertainty in EPM is 
75% (Table S1). Variability in background mixing ratios was negligible relative to the plume enhancements and 
is neglected.

2.2.2.  Fuel2Fire (High-Resolution Bottom-Up)

EC estimates for all FIREX-AQ wildland fires derived using a bottom-up style approach are publicly available 
on the FIREX-AQ data archive under the analysis tab (https://www-air.larc.nasa.gov/cgi-bin/ArcView/firex-
aq?ANALYSIS=1#SOJA.AMBER/) Additional detail concerning the Fuel2Fire methodology for calculating 
carbon emissions is available in the header of the individual data files. This data set, the Fuel2Fire carbon emis-
sions inventory, is optimized and designed to estimate carbon emissions specifically for the fires sampled during 
FIREX-AQ. We use Fuel2Fire EC estimates for the high-resolution bottom-up approach to estimate EC and EPM 
on a per transect basis for each of the fires included in this analysis. As a bottom-up inventory, Fuel2Fire cal-
culates EC in the same way as GFED, following Equation 1. The Fuel2Fire emissions inventory derives burned 
area using a combination of active fire detections from MODIS, VIIRS, and/or Geostationary Operational En-
vironment Satellite Program (GOES-16 and 17 ABI L2 +). Active fire pixels from one or more of these active 
fire detection products are selected to best match ground-verified interagency situational reports from fire man-
agement teams, as well as GeoMAC fire perimeters. Fuel2Fire determines fuel loading using high-resolution 
(30 m) fuels data from the Fuels Characteristics and Classification System (FCCS) (https://landfire.gov/fccs.php) 
(Ottmar et al., 2007) and models combustion completeness as a function of daily fire weather danger ratings. 
Fire weather danger ratings are derived using the National Fire Danger Rating System (Bradshaw et al., 1984) 
and obtained by extracting observed fire danger classes using daily maps of fire danger provided by the United 
States Forest Service Wildland Fire Assessment System (http://www.wfas.net/). Total daily carbon emissions 
are temporally distributed using a diurnal cycle of fire activity derived from geostationary satellite observations 
of FRP from GOES-16 and 17. Fuel2Fire assumes FC is 0.5 kg kg−1, but we note FC can vary from 0.45 to 0.55 
(Akagi et al., 2011; Burling et al., 2010; McMeeking et al., 2009; Santín et al., 2015; Susott et al., 1996; Yokel-

https://www-air.larc.nasa.gov/cgi-bin/ArcView/firexaq?ANALYSIS=1
https://www-air.larc.nasa.gov/cgi-bin/ArcView/firexaq?ANALYSIS=1
https://landfire.gov/fccs.php
http://www.wfas.net/
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son et al., 1997). The archived carbon emissions data has a native temporal resolution that matches GOES-16 
and 17 data (5 min) and is linearly interpolated to 1 Hz data for consistency with the aircraft data. EC estimates 
from Fuel2Fire extend over the course of an entire 24-hr day (local time) that a given fire was sampled during 
FIREX-AQ.

We convert EC estimates from the Fuel2Fire inventory to EPM as follows

𝐸𝐸𝑃𝑃𝑃𝑃 = 𝐸𝐸𝐶𝐶 × EFPM

𝐹𝐹𝐶𝐶
� (7)

Here, we obtain EC from the Fuel2Fire inventory, while EFPM is calculated using aircraft observations of trace 
gas and aerosol concentrations in smoke plumes from Western US wildland fires measured during FIREX-AQ. 
We choose to calculate EFPM from in situ observations as opposed to assuming EFPM from a compilation of 
previous studies in order to investigate the potential influence of the choice in EFPM on differences in emission 
rate estimates. We calculate EFPM for each in situ smoke plume transect using airborne measurements following 
the carbon mass balance approach (Ward & Radke, 1993; Yokelson et al., 1996, 1999). The time of emission is 
not the same as when the DC-8 sampled the plume, so we correct for this time offset by adding smoke age to the 
time of emission when determining the Fuel2Fire total carbon emission rates on a subplume, per transect basis. 
The smoke age is calculated for each point on the DC-8 transect assuming horizontal straight line advection of 
the smoke plume at the DC-8 measured wind speed (Wiggins et al., 2020). Although the smoke age and, thus, 
probability of plume processing increases as a function of downwind distance from the fire, we assume PM is 
conserved over the relatively short period of time (0.5–7 hr) that the smoke has been exposed to atmospheric 
aging processes when it was sampled by the DC-8 and attribute any changes in mass concentration to variability 
in fire activity (Garofalo et al., 2019; Hodshire et al., 2019).

We estimate relative uncertainty in EC and EPM derived from Fuel2Fire by propagating uncertainty through Equa-
tion 7. The relative uncertainty in EC is assumed to be 55%, calculated by taking the average divided by the stand-
ard deviation of all computed EC estimates for every fire and every transect included in this analysis. The relative 
uncertainty in EFPM is 39%, computed as the mean of all calculated EFPM for all fires and all transects divided by 
the standard deviation. The relative uncertainty in EPM is thus 67% (Table S1).

2.2.3.  HSRL-GOES (High-Resolution Top-Down)

We use FIREX-AQ aircraft-based HSRL measurements of aerosol extinction and geostationary satellite obser-
vations of FRP from GOES to calculate EPM using a high-resolution top-down approach, referred to as HS-
RL-GOES. We use the same equation that is used in FEER (Equation 3) to calculate EPM for the western fires 
sampled during FIREX-AQ on a per transect basis for the high-resolution top-down approach. Instead of using 
MODIS FRP, we obtain FRP from the GOES-16 and GOES-17 ABI L2 + Fire/hot spot Detection and Character-
ization product from the Wildfire Automated Biomass Burning Algorithm processing system (Schmidt, 2019). 
GOES has an exceptionally high temporal resolution (∼5–15 min) with FRP observations that cover the entire 
continental US at a spatial resolution of 2 km at nadir (Schmidt, 2019). We time align GOES FRP observations to 
match the in situ plume sampling time by adding the smoke age to the FRP observation time, and we include all 
FRP observations within 4 km of a given fire's final GeoMAC perimeter centroid. FRP per transect is calculated 
as the sum of all instantaneous FRP observations for a given fire averaged over the in situ plume sampling time 
for a given transect. The smoke emission coefficient (Ce) is also calculated for each fire on a per transect basis 
as follows:

�� =
WS × GS

MEE × FRP�

×
∑�end

�start
ΔAOT� Δ�� (8)

where FRP�  is the time-aligned, transect-average GOES FRP, MEE is the transect average MEE calculated from 
in situ measurements as described below, and 𝐴𝐴 ΔAOT is aerosol optical thickness derived from vertically integrat-
ing the background-subtracted 532 nm HSRL particle extinction coefficient (𝐴𝐴 Δ𝛼𝛼 ) as described by

ΔAOT� = ∫ Δ��Δ�� (9)
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HSRL is not able to collect measurements immediately above and below the aircraft. We linearly interpolated 
through the 60-m aircraft gap in the HSRL curtains to account for the missing data. Background extinction is de-
fined as the average HSRL extinction profile 10 s before and after the smoke plume transect. In cases, where the 
laser light fully attenuated before it reached the bottom of the plume, we assume the plume extended to the surface 
and extrapolate extinction to the ground using the closest measurement to the surface. In limited cases, where the 
beam is completely attenuated in the zenith direction, we integrate over the measured range but do not add any 
correction, because this is expected to be a relatively small contribution as the aircraft was typically flying near 
the top of the atmospheric boundary layer near plume top. We use the high-resolution in situ measurements from 
the DC-8 to calculate MEE; however, we note that most top-down inventories (such as FEER) assume a constant 
MEE of 4.6 m2 g−1 derived from previous studies (Reid, Eck, et al., 2005). We calculate transect average MEE 
as the slope of a reduced major axis regression with a forced zero intercept between total PM and the dry aero-
sol extinction coefficient at 532 nm for each transect. The extinction coefficient is calculated as the sum of dry 
scattering and absorption coefficients measured by a TSI-3563 Nephelometer at 550 nm and a three-wavelength 
Particle Soot Absorption Photometer at 532 nm (PSAP, Radiance Research), respectively. Scattering coefficients 
are converted to 532 nm to match the absorption coefficients using the angstrom exponent as calculated by the 
blue and green channels from the nephelometer. Scattering coefficients are corrected for truncation errors fol-
lowing Anderson and Ogren (1998), and PSAP absorption data are corrected following Virkkula (2010). The 
aerosol extinction humidification factor, f (RH) is assumed to be unity, which is consistent with the FIREX-AQ 
in-plume measurements.

We estimate the uncertainty in HSRL-GOES EPM by propagating uncertainty through Equation 3, where the rela-
tive uncertainty in Ce derived following Equation 8 is calculated as the mean Ce from all fires and all transects di-
vided by the standard deviation (67%), and the relative uncertainty in FRP is assumed to be 40% (Li et al., 2020). 
The relative uncertainty in HSRL-GOES EPM is thus 77% (Table S1).

2.3.  Comparison of Approaches

We summarize the approaches and relevant equations used in this study to calculate EC and EPM in Table 1. 
We evaluate emission rate estimates between the high-resolution bottom-up (Fuel2Fire) and top-down (HS-
RL-GOES) based approaches against the in situ approach on a per transect basis for individual wildland fires 
sampled during FIREX-AQ. The relationship between the different approaches is quantified using the slope of 
a reduced major axis regression with a forced zero intercept, a Pearson's correlation coefficient, and root mean 
square error (RMSE). These calculations are performed as a campaign level summary that includes all transects 
and all fires and for each fire individually.

Inventory or 
approach Style Spatial range Temporal resolution Eqns. Input variables

Output 
variables

GFED4.1s Bottom-up Global Daily 1 BA, FL, CC, FC EC

2 �̂����� , EFPM, Fc, 𝐴𝐴 Δ𝐗𝐗GFED EPM

FEERv1.0 Top-down Global Daily 3 Ce (MODIS), FRP (MODIS) EPM

4 �̂������ , 𝐴𝐴 Δ𝐗𝐗𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 EPM

In situ In situ Western US (FIREX-AQ) Subplume timescale (per aircraft transect) 5 CO2, CO, CH4, OC, BC, PM, H, WS, GS EC, EPM

6 𝐴𝐴 Δ𝐳𝐳 , 𝐴𝐴 𝐴𝐴 H

Fuel2Fire Bottom-up Western US (FIREX-AQ) Subplume timescale (per aircraft transect) 1 BA, FL, CC, FC EC

7 EC, EFPM, FC EPM

HSRL-GOES Top-down Western US (FIREX-AQ) Subplume timescale (per aircraft transect) 3 Ce (Aircraft-GOES), FRP (GOES) EPM

8 WS, GS, MEE, FRP (GOES), AOT     Ce

9 𝐴𝐴 𝐴𝐴𝐭𝐭 , 𝐴𝐴 Δ𝐳𝐳 AOT

Note. GFED4.1s also provides data at a 3 hr temporal resolution, but we use only the daily product.

Table 1 
Summary of Approaches Used to Calculate Fire Carbon and Particulate Mass (PM) Emission Rates
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We compare daily (24 hr local time) average EPM estimates from the three high-resolution approaches (In Situ, 
Fuel2Fire, and HSRL-GOES) to daily average estimates derived from lower resolution global fire emissions 
inventories (GFED and FEER). These comparisons are performed on daily average emission rate estimates, as 
opposed to estimates on a per transect basis, because of the lower temporal resolutions of GFED (3 hr/daily) and 
FEER (daily).

2.4.  Smoke Emission Coefficients

The high spatial and temporal resolution of the in situ, bottom-up (Fuel2Fire), and top-down (HSRL-GOES) 
based approaches provide the opportunity to evaluate smoke emission coefficients that are usually derived using 
many years of data. Smoke emission coefficients for PM are calculated as the slope of a reduced major axis 
regression with a forced zero intercept between GOES FRP time aligned to the transect sampling time versus 
EPM for each of the three high-resolution approaches. These computations are also executed as a campaign level 
summary and for each fire individually. We compare our Ce from the high-resolution approaches to the average 
FEER Ce for the western fires sampled during FIREX-AQ.

3.  Results and Discussion
3.1.  Total Carbon Emission Rates

The derivation of the variables used to calculate EC using bottom-up approaches are based on assumptions that 
can lead to both under and overestimation, depending on the data products leveraged by a given fire emissions 
inventory. We uncover a significant relationship between EC per transect derived from the high-resolution bot-
tom-up approach (Fuel2Fire) and the in situ approach as shown in Figure 2 (slope = 1.00, r = 0.82). However, 
there is also a nontrivial level of scatter in this relationship (RMSE = 67%), and individual fires considered sep-
arately have different correlations and regression slopes.

From Figure 3, we similarly find strong, linear correlations between daily fire average EC from the in situ meas-
urement based estimates and Fuel2Fire (slope = 1.09, r = 0.92, RMSE = 61%) and GFED (slope = 0.20, r = 0.87, 
RMSE = 132%). The daily average EC estimated using Fuel2Fire are marginally higher than estimates derived 
from the in situ approach, while the GFED estimates are 80% lower. The strong correlation, but significant offset 
between GFED and the in situ measurement based approach implies that there may be a systematic bias in one or 
more of the variables used to calculate the mass of biomass consumed in some traditional bottom-up inventories. 
In this section, we examine the assumptions and uncertainty in individual variables used to calculate EC using a 
bottom-up approach in an effort to understand the differences in EC estimates derived from Fuel2Fire and GFED 
relative to the in situ approach.

3.1.1.  Carbon Mass Balance

The key assumption in many bottom-up approaches is that all burnt carbon is volatilized and released into the 
atmosphere. This carbon mass balance assumption has recently been scrutinized because not all fuel that has been 
thermally altered by a fire is emitted to the atmosphere (Santín et al., 2015; Surawski et al., 2016). Some of the 
burnt fuel remains on the ground as charred biomass. If the carbon mass balance assumption does not hold, then 
this could potentially cause an overestimation of carbon emissions derived from bottom-up approaches by up to 
50% in temperate forests, depending on levels of combustion completeness (Santín et al., 2015). Our results do 
not show significant evidence of bias in EC estimates from Fuel2Fire, but do show a distinct low bias in estimates 
from GFED. This suggests there are underlying confounding factors to disentangle before it is possible to deter-
mine, if the assumptions inherent in the carbon mass balance approach are responsible for a significant bias in 
bottom-up inventories.

3.1.2.  Burned Area

The two methods for calculating burned area using a bottom-up approach operate under specific assumptions that 
could cause either an over or under estimation of carbon emissions. The active fire based method has the potential 
to overestimate burned area because it assumes all the area within the resolution of a single active fire detection 
is burned. Conversely, the burned area based method using MODIS burned area data products (MCD64A1) 
has been shown to underestimate burned area because of high omission error in grid cells with smaller propor-
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tions of burned area (Boschetti et al., 2019). A recent validation study that compares 500-m resolution MODIS 
burned area products (MCD64A1) against 30-meter resolution Landsat data found MODIS underestimated glob-
al burned area by 54% (Boschetti et al., 2019). However, MODIS burned area products also have a nontrivial level 
of uncertainty, ∼44% (Giglio et al., 2018).

Fuel2Fire, calculates burned area using the active fire approach, while GFED uses MODIS burned area data prod-
ucts. GFED4.1s attempts to address the known small fire driven burned area underestimation from MODIS using 
a supplementary algorithm known as the small fire boost (Randerson et al., 2012; Van Der Werf et al., 2017). 
We compare the GFED and Fuel2Fire burned area estimates in Figure S2, which are in good agreement for the 
western fires sampled during FIREX-AQ (slope = 0.97, r = 0.93). This indicates that the differences in the two 
approaches to calculate burned area are not responsible for the low bias we see in GFED emission rate estimates.

3.1.3.  Combustion Completeness

All state-of-the-art approaches to calculate combustion completeness rely on daily or monthly average observa-
tions, and therefore they cannot accurately estimate the pronounced subdaily changes in combustion complete-
ness that occur throughout the diurnal cycle of fire activity. Instead, these methods assume combustion complete-
ness can be estimated using observations averaged over large areas. Combustion completeness in the Fuel2Fire 
inventory is based on daily fire weather danger ratings, where higher levels of fire danger equate to higher 
consumption rates, while GFED models combustion completeness as a function of fuel type and fuel moisture 
conditions within the framework of a satellite-driven biogeochemical model with a monthly temporal resolution.

In GFED, the average combustion completeness for temperate North American fires from 1997 to 2016 is 0.39 
for standing fuel (all litter and biomass), while the average Fuel2Fire combustion completeness across all of the 
Western US wildland fires sampled during FIREX-AQ is 0.5 for standing fuel. GFED underestimates EC for 
almost every fire included in this analysis (Figure 3). This suggests the differences in the approaches to calcu-
late combustion completeness could potentially account for ∼22% of the systematic low bias found in GFED 
EC estimates. It has been shown that GFED average fuel consumption for temperate forest fires is 33% below 

Figure 2.  Relationship between total carbon emission rates (EC) from the high-resolution bottom-up approach, Fuel2Fire, and 
the in situ approach. Different markers correspond to specific sampling days for each fire and repeated markers correspond to 
different transects of the same fire for the given sampling day. The green line shows the fit between EC using a reduced major 
axis regression with a forced zero intercept. The dashed black line shows a perfect 1:1 relationship for reference. The slope for 
the linear fit, Pearson's correlation coefficient (r), and root mean square error (RMSE) are given in the legend.
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measured values (Van Der Werf et al., 2017), however the low bias compared to observations was attributed to an 
anomalously high field based measurement of fuels from a temperate forest fire in Tasmania. Alternatively, it is 
possible that the low bias in GFED combustion completeness for temperate North America is a result of climate 
change causing a shift toward more favorable fire weather conditions that support enhanced fuel consumption 
(Abatzoglou & Williams, 2016), however additional field measurements of fuel consumption from Western US 
wildland fires from more recent years are needed to confirm this hypothesis.

3.1.4.  Fuel Loading

The complexity and variability of fuel type (or land cover) and loading are difficult to accurately represent and 
validate. High spatial resolution fuel databases, such as the FCCS database used in the Fuel2Fire inventory, are 
derived from a compilation of previous remote sensing studies, government databases, photos, in situ measure-
ments, and expert opinion (Ottmar et al., 2007). The spatial resolution of FCCS is 30 m, but this resolution is 
achieved through the extrapolation of field-based measurements to ecosystem scales. The extrapolation relies on 
a number of strong assumptions that infer the distribution and composition of fuels from the same, similarly aged, 
spectrally similar ecosystems are roughly spatially constant. However, fuels are constantly changing in response 
to seasonal, environmental, and anthropogenic forcing, but the laborious effort required to develop fuel databases 
severely restricts the rate at which they can be updated. As a result, fuel bed databases can remain unchanged 
and out of date for a number of years before updates are implemented. This delay can exacerbate the uncertainty 
and error in fuel loading estimates. A previous study compared FCCS with an extensive data set of USFS Forest 
Inventory and Analysis plot data (>10,000 plots) and discovered FCCS suffered from poor classification accu-
racy (Keane et al., 2013), which may explain the significant spread we see between emission rate estimates from 
Fuel2Fire versus the in situ measurement based approach. Model based estimates of fuel loading that rely on 
remote sensing observations of surface characteristics, like those used in GFED, are similarly challenged by the 
limited number of field measurements available to validate estimates. Potential bias stemming from fuel loading 

Figure 3.  Relationship between daily fire average total carbon emission rates (EC) from Fuel2Fire and GFED versus the in 
situ measurement based approach. Different markers correspond to specific fires on specific sampling days. The green line 
shows the fit between Fuel2Fire EC estimates versus the in situ approach using a reduced major axis regression with a forced 
zero intercept. The yellow line shows the fit between GFED EC estimates versus the in situ approach. The dashed black line 
shows a perfect 1:1 relationship for reference. The slope for the linear fit, Pearson's correlation coefficient (r), and root mean 
square error (RMSE) are given in the legend.
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estimates can be negative or positive, depending on the accuracy of initial estimates and if the database or model 
correctly implements changes in fuel loading following ecosystem disturbance mechanisms including fire.

We discover an exceptional uncertainty in GFED fuel loading (111%), however the uncertainty in the FCCS fu-
els database used by Fuel2Fire is estimated to be much lower (∼70%) (Keane et al., 2013, Table S1). The likely 
cause for the persistent underestimation of GFED EC estimates from Western US wildland fires stems from the 
differences in fuel loading estimates from the model used in GFED combined with a low bias in combustion 
completeness. The agreement we see in EC estimates from Fuel2Fire versus the in situ based approach provides 
confidence in the use of high-resolution fuels databases such as FCCS (Figure 2).

Previous studies aimed at quantifying uncertainty in the parameters used by bottom-up inventories to calcu-
late emissions have also identified fuel loading as a major source of uncertainty (French et al., 2004; Kennedy 
et al., 2020; Larkin et al., 2012; Prichard et al., 2019; Urbanski et al., 2011). Furthermore, fuel loading uncertain-
ty likely fluctuates considerably as a function of vegetation type, due to scarce field validation studies for certain 
ecosystems and/or mapping errors. A recent study by Prichard et al. (2019) recommends using fitted distributions 
of fuel loading based on available data as an effort to capture the variability that exists in this parameter. The 
North American Wildland Fuels Database is an example of a geospatial database that provides these distributions 
along with robust uncertainty estimates (https://fuels.mtri.org/). Our results highlight the need for additional field 
validation studies to constrain fuel loading estimates and support the use of a fuel loading distribution as opposed 
to a single value.

3.2.  Total PM Emission Rates

We find the strong relationship between Fuel2Fire and the in situ based method persists for EPM at a subplume 
scale, albeit with a similarly high level of scatter as shown in Figure 4a and Table 2 (slope = 0.90, r = 0.77, 
RMSE = 61%). We derive EFPM from the in situ FIREX-AQ measurements on a per transect basis in order to 
minimize the potential influence of emission factor uncertainty in Fuel2Fire EPM estimates. The high level of 
spread in the data is likely an artifact of the uncertainty in EC from Fuel2Fire caused by the biases and sources 
of uncertainty discussed in Section 3.1, most notably the impacts of fuel loading uncertainties. Additionally, this 

Figure 4.  Relationship between total PM emission rates (EPM) derived from the high-resolution bottom-up approach (Fuel2Fire) versus in situ shown in panel a, and the 
same relationship between the high-resolution top-down aircraft approach (HSRL-GOES) and the in situ approach shown in panel (b). Different markers correspond to 
specific sampling days for each fire and repeated markers correspond to different transects of the same fire for the given sampling day. The green line in panel a shows 
the reduced major axis regression with a forced zero intercept for Fuel2Fire EPM estimates versus in situ, and the blue line in panel b shows the fit for the HSRL-GOES 
EPM estimates versus in situ. Legend gives the slope for the linear fit, Pearson's correlation coefficient (r), and root mean square error (RMSE).

https://fuels.mtri.org/
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comparison is based on the assumption that the transport of fire emissions 
from the ground to the in situ transect is accurately modeled in both space 
and time.

Figure  4b and Table  2 shows a significant relationship between EPM cal-
culated using HSRL-GOES and the in situ approach at a sub-plume scale 
(slope = 1.04, r = 0.82, RMSE = 48%). While there is a marginally lower 
level of scatter in this relationship as shown by the RMSE, HSRL-GOES 
slightly overestimates EPM on the lower end of the scale compared to the 
in situ approach. This overestimate implies from Equation 3 that either or 
both the GOES FRP and Ce for these fire transects are biased high, where it 
follows from Equation 8 that the latter may be influenced by a low estimate 
of the smoke MEE or a high estimate of the optical thickness. A high optical 
thickness bias might be due to the extrapolation of HSRL extinction to the 
surface for cases when the laser light fully attenuates; although, we note the 
bias is most significant for the lower emission rates, which might discount 
this hypothesis.

We find strong correlations between daily average EPM estimates from the in 
situ approach versus estimates from both of the high-resolution approach-
es, Fuel2Fire (slope  =  1.04, r  =  0.93, RMSE  =  39%) and HSRL-GOES 
(slope = 1.18, r = 0.89, RMSE = 47%) (Figure 5). The correlation is weaker 
and the spread is larger between the in situ based estimates and estimates 
from the lower-resolution global inventories, GFED and FEER. The system-
atic low bias seen in GFED daily average EC estimates is also seen for daily 
average EPM for all but the fires with the lowest emission rates (slope = 0.21, 

Fire name Date flown

Fuel2Fire EPM HSRL-GOES EPM

m r RMSE m r RMSE

Shady 07/25 0.13 0.44 13% 1.69 0.53 67%

North Hills 07/29 1.69 0.45 58% 6.27 0.55 30%

Tucker 07/29 0.10 0.61 39% 1.59 0.66 107%

Williams Flats 08/03 1.13 0.89 15% 1.07 0.84 149%

Williams Flats 08/06 0.59 0.07 116% 5.76 0.33 37%

Horsefly 08/06 1.70 0.63 627% 1.92 0.89 15%

Williams Flats 08/07 0.88 0.63 45% 0.94 0.69 87%

Castle 08/12 1.10 0.56 29% 3.54 0.73 18%

Castle 08/13 1.15 0.53 232% 4.48 0.71 232%

Sheridan 08/16 0.41 0.77 1529% 0.93 0.69 276%

Note. Fire name is given in the far left panel, followed by date flown

Table 2 
Reduced Major Axis Regression Slope (m), Pearson's Correlation 
Coefficient (r), and Root Mean Square Error (RMSE) for Particulate Mass 
(PM) Emission Rates (EPM) From Fuel2Fire and HSRL-GOES Versus the In 
Situ Based Approach Per Fire

Figure 5.  Daily fire average particulate mass (PM) emission rates (EPM) from Fuel2Fire, HSRL-GOES, GFED, and FEER 
compared to estimates from the in situ approach. Different markers correspond to specific fires on specific sampling days. 
Green markers represent estimates from Fuel2Fire and the green line represents the reduced major axis regression with 
a forced zero intercept between Fuel2Fire estimates and in situ estimates. Blue markers and line represent HSRL-GOES 
estimates and regression. Purple markers and line represent FEER estimates and regression. Orange markers and line 
represent GFED estimates and regression. The slope for the linear fit, Pearson's correlation coefficient (r), and root mean 
square error (RMSE) are given in the legend.
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r = 0.85, RMSE = 104%). FEER slightly underestimates EPM from larger fires that have higher PM emission rates 
and overestimates EPM from smaller fires that have relatively lower PM emission rates (slope = 1.38, r = 0.64, 
RMSE = 55%). FEER provides no EPM estimates for the Castle fire on both days of sampling, and we exclude 
these zero estimates from this fire when computing the linear regression and correlation coefficient given their 
disproportionate weight in skewing the regression.

Global fire emissions inventories are known to significantly differ on EPM estimates from temperate fires, espe-
cially in North America (Lu et al., 2019; Nikonovas et al., 2017; Pan et al., 2020). In the following sections, we 
use the high-resolution airborne in situ measurements of smoke plumes collected during FIREX-AQ to isolate the 
assumptions and variables responsible for the discrepancy and quantify their relative contributions.

3.2.1.  Emission Factors

Emission factors are used in bottom-up approaches to convert carbon emissions to emissions of a specific trace 
gas or particulate species, and emission factor estimates usually come from compilation studies that include in 
situ measurements from wildland fires, prescribed fires and laboratory experiments (Akagi et al., 2011; Andre-
ae, 2019; Andreae & Merlet, 2001; May et al., 2014). The use of such emission factors relies on the assumption 
that the most representative value can be approximated as the mean of all previous studies. In reality, emission 
factors are dynamic and vary as a function of combustion efficiency, which can spatiotemporally fluctuate for 
a given fire. Laboratory studies struggle to represent the complexity of a wildland fire and can disagree with in 
situ measurements, while in situ measurements are subject to sampling bias (Hodshire et al., 2019; Yokelson 
et al., 2013). For example, airborne based measurements tend to be limited to daytime sampling of well-devel-
oped plumes that have risen to an altitude that is accessible by the aircraft. Consequently, these measurements 
may be biased toward flaming combustion because nighttime and/or smoldering emissions resulting from less en-
ergetic fire activity are likely not being sampled (Burling et al., 2011; Prichard et al., 2020; Wiggins et al., 2021). 
The suggested EFPM for temperate forests from GFED is 17.6 g kg−1, and the mean EFPM we calculated using 
FIREX-AQ in situ airborne measurements is 15.8 ± 4.3 g kg−1, which is well within range of the suggested EFPM 
from GFED. Our results suggest EFPM does not strongly contribute to bias in bottom-up emission rate estimates 
from Fuel2Fire or GFED for the fires sampled during FIREX-AQ. However, we acknowledge this analysis fo-
cused exclusively on fires with well-developed plumes that were sampled during the daytime, and thus may not 
be subject to EFPM discrepancies that can occur, as a result of under sampled smoldering combustion.

3.2.2.  Smoke Emission Coefficient (Ce)

Smoke emission coefficients used by top-down inventories to convert FRP to EPM are typically derived using 
multiple years of AOD and FRP observations, but here we use high-resolution measurements from FIREX-AQ to 
calculate Ce over a limited duration for a small number of fires. We find strong to moderate linear relationships 
between GOES FRP observations and the calculated emission rates from the high-resolution in situ approach 
(Ce = 5.0 gPM MW−1, r = 0.75, RMSE = 165%), Fuel2Fire (Ce = 8.2 gPM MW−1, r = 0.94, RMSE = 46%), 
and HSRL-GOES (Ce = 8.4 gPM MW−1, r = 0.72, RMSE = 75%) (Figure 6). Individual fires have significantly 
different Ce, and vary depending on which approach was used to calculate EPM (Table 3), which highlights the 
sensitivity and natural variability of this parameter. All three of the high-resolution approaches estimate a low-
er Ce for the set of Western US wildland fires included in this study compared to the estimated Ce from FEER 
(10.6 gPM MW−1). However, the calculated Ce are within the large uncertainty (50%) of the Ce for western US 
fires derived from FEER, and the RMSE is substantial for the in situ approach and HSRL-GOES.

Fuel2Fire temporally distributes emissions using the diurnal cycle of GOES FRP observations, which explains 
the exceptionally strong linearity and correlation between GOES FRP and EPM estimates in Figure  6b. HS-
RL-GOES EPM estimates shown in Figure 6c continue to have a slight high bias on the lower end of the scale. 
We find a high bias in EPM for the Castle fire in all three high-resolution approaches compared to what would be 
expected based on the overall campaign level relationship between FRP and emission rates (Figure 6). The Castle 
fire had the lowest average excess PM concentrations per transect out of all the fires included in this analysis. The 
elevated emission rates from all three approaches indicate GOES likely missed some of the FRP, likely due to 
low temperature smoldering or cloud cover, which is consistent with the low fire severity measured in postburn 
satellite data.

FEER uses MODIS FRP observations to calculate Ce, but we use GOES FRP. There could be a potential offset 
between FRP observations between MODIS and GOES as a result of differences in instrument resolution and 
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saturation levels as well as overpass time effects (Figure S3, Li et al., 2019; Xu et al., 2021). The coarse spatial 
resolution of GOES (2 km) limits its capability to detect cool or small fires with low FRP, and could result in an 
underestimation of FRP by up to 50% globally (Freeborn et al., 2008), which would explain the difference in Ce 
estimated using the high-resolution approaches versus FEER. We use GOES FRP because of the exceptionally 

Figure 6.  Relationship between GOES FRP and total particulate mass (PM) emission rates (EPM) derived from the in 
situ approach (panel a) and the same relationship for Fuel2Fire (panel b) and HSRL-GOES (panel c). Different markers 
correspond to specific sampling days for each fire and repeated markers correspond to different transects of the same fire 
for the given sampling day. The red line shows the fit to a reduced major axis regression with a forced zero intercept for the 
GOES fire radiative power (FRP) versus in situ comparison, the green line shows the fit for Fuel2Fire, and the blue line 
shows the fit for HSRL-GOES. The slope of each regression is equal to the smoke emission coefficient (Ce). The dashed gray 
line is the Ce derived from FEER and the gray shading represents the corresponding uncertainty range. Legend gives the slope 
for the linear fit, correlation coefficient (r), and root mean square error (RMSE %).
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high time resolution (5–15 min) over the continental US versus the twice daily temporal resolution of MODIS or 
VIIRS. This allows for a more direct comparison between in situ measurements and remote sensing observations.

Previous studies have suggested EPM and thus Ce calculated using MODIS AOD may be systematically biased low 
because of a discrepancy between observed AOD from MODIS versus AERONET and MISR, and/or because 
of invalid assumptions including the assumption of a constant MEE or the assumption of linear variation in FRP 
between Terra and Aqua overpass times (Lu et al., 2019; Nikonovas et al., 2017; Pan et al., 2020). Conversely, 
we find agreement between EPM calculated independently of MODIS AOD and EPM estimated from FEER, which 
relies on MODIS AOD observations. The results suggest MODIS AOD observations can be used to represent 
atmospheric aerosol mass loading of particulates emitted by Western US wildland fires, however, the high RMSE 
in the linear fits used to derive smoke emission coefficients in this study and the lack of agreement with more 
recent studies indicates more research is needed to address this issue.

3.2.2.1.  Mass Extinction Efficiency (MEE)

The conversion of FRP to PM assumes that variability in particle extinction, and thus AOD, is driven by chang-
es in aerosol mass concentration rather than aerosol intensive properties. Estimates of particle mass extinction 
efficiency (MEE) are essential to the conversion of AOD to total PM. However, aerosol extinction and other 
optical properties depend on particle size, morphology, and chemical composition (Seinfeld & Pandis, 2006). 
The characteristics of biomass burning aerosols are known to vary with fuel type and combustion efficiency (Mc-
Clure et al., 2020; Reid, Koppmann, et al., 2005; Reid, Eck, et al., 2005). Furthermore, the physical and optical 
properties of smoke aerosols rapidly evolve following emission as a result of photochemical aging and aerosol 
microphysical processes (Akagi et al., 2012; Cappa et al., 2020; Garofalo et al., 2019; Hodshire et al., 2019; May 
et al., 2014; Shingler et al., 2016). Particle evolution via these processes is additionally influenced by external 
factors, such as the fire size, rate of dilution, and background aerosol concentrations (Hodshire et al., 2019). The 
assumption that variability in AOD is entirely due to changes in particle concentration oversimplifies the complex 
interactions of smoke particle microphysical processes and photochemical aging. Some top-down inventories 
attempt to reconcile this discrepancy by calculating a separate Ce for each individual ecosystem. However, this is 
likely not sufficient to fully address the variability in smoke aerosol extinction that often occurs even in smoke 
plumes from fires within a single ecosystem type.

Top-down inventories, including FEER, usually assume a constant MEE of 4.6 m2 g−1 based on a compilation of 
previous studies (Ichoku & Kaufman, 2005; Reid, Eck, et al., 2005). The compilation found MEE varied between 
3.4 and 5.1 m2 g−1 for biomass burning particles of all ages across a diverse set of ecosystems (Figure S4) (Reid, 
Eck, et al., 2005). We find MEE values vary between 2 and 6 m2 g−1 for the FIREX-AQ smoke plumes and that 

Fire name Date flown

In situ Fuel2Fire HSRL-GOES

M r RMSE m r RMSE m r RMSE

Shady 07/25 0.0022 0.53 85% 0.001 0.80 148% 0.012 0.44 78%

North Hills 07/29 0.0011 0.77 57% 0.014 0.95 46% 0.015 0.61 40%

Tucker 07/29 0.0076 0.49 74% 0.003 0.89 55% 0.033 0.60 63%

Williams Flats 08/03 0.0039 0.69 934% 0.010 0.91 71% 0.011 0.69 139%

Williams Flats 08/06 0.0039 0.70 6% 0.010 0.96 491% 0.057 0.63 69%

Horsefly 08/06 0.0012 0.61 292% 0.008 0.84 311% 0.012 0.69 118%

Williams Flats 08/07 0.0040 0.67 21% 0.009 0.90 1% 0.008 0.45 18%

Castle 08/12 0.0060 0.58 4531% 0.027 0.68 209% 0.060 0.86 111%

Castle 08/13 0.0646 0.61 57% 0.204 0.65 147% 0.555 0.55 81%

Sheridan 08/16 0.0017 0.68 3154% 0.002 0.84 1199% 0.005 0.66 274%

Note. The slope is equal to the smoke emission coefficient (Ce)

Table 3 
Reduced Major Axis Regression Slope (m), Pearson's Correlation Coefficient (r), and Root Mean Square Error (RMSE) for 
GOES Fire Radiative Power (FRP) Versus Total PM Emission Rates (EPM) for the In Situ Approach, Fuel2Fire, and HSRL-
GOES Per Individual Fire
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the MEE increases asymptotically as a function of smoke age (Figure 7). Our observations indicate MEE ap-
proaches the mean from previous studies as the smoke rapidly evolves in the early hours after emission. The rate 
at which MEE increases with smoke age is variable among the fires included in this analysis and does not appear 
to depend on the plume PM concentration. Our range of MEEs for smoke plumes from Western US wildland fires 
using high-resolution in situ measurements is larger than what has been observed in previous studies. Our results 
emphasize the variability that can occur in smoke MEE, and suggest that the top-down approach is likely more 
sensitive to MEE than previous studies imply. Additional measurements are needed to better understand the var-
iability in MEE to ultimately improve parameterization of MEE with respect to smoke age. The use of a constant 
MEE could lead to a high bias for fires with lower excess PM concentrations and a low bias for fires with higher 
excess PM concentrations, which would explain the trend we see in Figure 5, where FEER underestimates fire 
EPM from the most actively burning fires and overestimates EPM from smaller, weaker fires.

3.2.2.2.  Instantaneous Observations of FRP and AOD

FEER uses daytime MODIS FRP and AOD observations to derive Ce and assumes that the FRP at the time of 
observation is directly related to the smoke plume AOD. However, fires have a clear, ecosystem dependent diur-
nal cycle with the time of peak fire activity depending on the specific landcover, geographic location, elevation, 
slope, aspect, and type of fire (e.g., wildland, prescribed, crown, and surface). FRP observations represent the 
instantaneous fuel consumption and corresponding emissions of a given fire, but AOD observations represent 
the total mass of aerosols emitted by a fire, including the time period when the fire was active before the satellite 
overpass time. The variability in FRP that occurs over the course of a day has a clear impact on the total mass of 
smoke particles in the plume as a function of downwind distance from the fire and wind speed, but polar orbiters, 
like MODIS, do not have the temporal resolution to quantify this relationship. As a result, Ce derived using FRP 
and AOD observed after the peak in diurnal fire activity are likely overestimated, while Ce derived using FRP and 
AOD observed prior to the peak may be slightly underestimated. The exact nature and magnitude of the potential 
bias would depend on a specific fire's diurnal cycle and the age of the smoke captured in the satellite observations 
of AOD. With respect to the calculation of EPM using a predetermined Ce, the time offset between MODIS over-
pass times and peak diurnal fire activity could similarly cause a bias. EPM could potentially be biased high or low 

Figure 7.  Mass extinction efficiency (MEE) versus smoke age per transect for each fire. Different markers correspond to 
specific sampling days for each fire and repeated markers correspond to different transects of the same fire for the given 
sampling day. Markers are colored as a function of transect mean excess particulate mass (PM) concentration. The constant 
MEE assumed by FEER is shown as the dashed black line for reference.
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if the satellite overpass time occurred either before or after the peak in diurnal fire activity, and if the observed 
FRP was higher or lower than the daily average FRP.

A recent study by Mota and Wooster (2018) demonstrated fire emission rates can be calculated at a high tem-
poral and spatial resolution (hourly and 0.05° × 0.05°, respectively) using a top-down approach that relies on 
geostationary satellite observations of FRP from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) 
to avoid bias caused by inadequate sampling of a fire's diurnal cycle. We compare geostationary satellite obser-
vations of FRP from GOES that match the overpass times of MODIS with the average of all FRP observations 
over the course of a day for each fire to investigate potential bias in EPM estimates from FEER. The Western US 
wildland fires sampled during FIREX-AQ exhibited peak fire activity from 3 to 6 p.m. local time (Pacific/Moun-
tain daylight time, UTC-7/UTC-6) (Wiggins et al., 2020). Meanwhile, local MODIS overpass times are ∼10:30 
a.m. for the Terra satellite and ∼1:20 p.m. for Aqua. We find average GOES FRP at the time of the MODIS 
overpasses is double the daily average FRP from GOES (Figure S3), which could be partially responsible for the 
overestimation in FEER EPM estimates for smaller fires that we see in Figure 5.

4.  Summary and Conclusions
We present a comprehensive evaluation of total carbon and aerosol emission rate estimates computed using the 
methodologies and assumptions that are commonly employed by global inventories used by models. These emis-
sions inventories have the monumental task of capturing the composition, magnitude, and temporal variability of 
fire emissions from nearly every ecosystem on Earth. They are critical for the representation of wildland fires in 
large-scale models, and only recently have sufficiently comprehensive observational datasets become available to 
evaluate their performance. One such study is the 2019 joint NASA/NOAA FIREX-AQ airborne mission. Here, 
we extend the methods and assumptions employed by emissions inventories to develop state-of-the-art, high-res-
olution emission rate estimates for each of the western FIREX-AQ fires, which are based on detailed information 
garnered from ground, airborne, and satellite assets.

We discover excellent agreement between the high-resolution emission rate estimates calculated using integrated 
airborne in situ and lidar observations and the high-resolution top-down (HSRL-GOES) and bottom-up (Fuel-
2Fire) estimates at unusually high sub-plume spatiotemporal resolution. While there is considerable scatter in 
the one-to-one plots comparing Fuel2Fire to the airborne in situ data, the emissions rate estimates for both total 
carbon and PM are not consistently biased between these methodological approaches. HSRL-GOES appears to 
slightly overestimate EPM toward the lower end of the observed range of variability (which appears to also scale 
with FRP). Emission rate estimates calculated using the lower resolution global fire emissions inventories, FEER 
and GFED, have a weaker relationship with the high-resolution approaches and show evidence of systematic bias, 
which is most apparent for GFED.

We discuss, in detail, the key assumptions employed by bottom-up approaches and conclude that the strong 
performance of the Fuel2Fire inventory stems from detailed information about fuel type and loading that are 
parameterized with significant uncertainty in the global inventories. Combustion completeness is likely underes-
timated in GFED for fires in temperate North America, and estimates could potentially be improved by utilizing 
daily fire weather danger ratings instead of relying entirely on model estimates of fuel moisture. In addition, we 
note that the high-temporal resolution of the Fuel2Fire data set also allows it to capture the entire diurnal cycle 
of the fire activity, which also serves to improve its predictive skill. This hints that the high temporal resolution 
of geostationary satellite observations of FRP could be used to correct the bias caused by satellite overpass 
times. With respect to top-down approaches, we find a larger range in MEE for this small subset of Western US 
fires than what has been reported in a compilation of previous studies that includes MEE from fires in a diverse 
selection of global ecosystems. The high-resolution top-down approach (HSRL-GOES) allowed for the appli-
cation of variable MEE obtained from sub-plume in situ measurements. HSRL extinction measurements of the 
smoke plumes sampled during FIREX-AQ combined with geostationary satellite observations of FRP offered an 
exceptionally detailed measure of AOD and FRP associated with the smoke plume. The use of a constant MEE 
to convert AOD to PM in top-down approaches combined with bias from assumptions related to instantaneous 
observations of FRP and AOD are likely responsible for the underestimation in FEER EPM for larger fires and 
overestimation for smaller fires.
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Finally, it is important to note that it is not yet computationally practical or feasible for global fire emissions in-
ventories to achieve the level of complexity and detail in the high-resolution approaches presented here. We use 
these approaches to investigate discrepancies between top-down and bottom-up EPM estimates for Western US 
wildland fires. However, this collection of fires represents only a small subset of the total number of fires that 
burn every year in the Western US and may not be a perfect representation of the complexity that can exist in fire 
emissions. In short, we have the luxury of evaluating the skill of the global emissions inventories for a small sub-
set of wildland fires for which we have unprecedentedly comprehensive data, but we would be wise to remember 
that the goal of global emissions inventories is to represent all fires reasonably well rather than to represent a 
few fires perfectly. Consequently, it may be premature to adopt new values for, for example, the smoke emission 
coefficient based solely on the FIREX-AQ data set. Our analysis does emphasize areas of large uncertainty that 
may be improved. One is the estimate of fuel type and loading that likely contributes to the scatter we see in the 
bottom-up emission rate estimates from GFED and Fuel2Fire. Burned area and aerosol mass emission factors do 
not appear to be large sources of uncertainty as there is good agreement seen for both GFED and Fuel2Fire for 
both of these metrics. The importance of the high-temporal resolution observations of both FRP and smoke AOD 
afforded by the geostationary satellites currently in orbit cannot be overstated, as a lack of complete orbital cover-
age is also likely to be a strong contributor to the inventory emissions underestimates. The use of a constant MEE 
to convert AOD to PM should be revisited in light of the much higher variability we find in MEE observations 
for such a limited number of fires, which accentuates the need for additional measurements of this key variable. 
In summary, both top-down and bottom-up global fire emissions inventories suffer from assumptions that may 
hold true in the aggregate, but break down on an individual fire basis. The strong agreement that we show here 
between the high-resolution approaches holds promise for future fire emissions inventories as advances in remote 
sensing, improved computational efficiency, and a more complete understanding of fire behavior begin to offer 
opportunities to increase the accuracy and resolution of global fire inventories.

Appendix A:  List of Variables and Common Units

𝐴𝐴 𝐴𝐴𝑡𝑡 HSRL extinction coefficient km−1

ΑP,FEER FEER pixel area km2

ΑP,GFED GFED pixel area km2

AOD Aerosol optical depth unitless

β HSRL backscatter ratio 𝐴𝐴 km−1 sr−1

BA Burned area m2

CC Combustion completeness %

Ce Smoke emission coefficient gPM MW−1

ΔC Excess mass concentration of C μgC m−3

ΔPM Excess mass concentration of PM μgPM m−3

Δt HSRL curtain pixel width s

Δz HSRL curtain pixel height m

EC Emission rate of total carbon kgC s−1

�̂� Area-normalized emission rate of total carbon kgC m−2 s−1

EPM Emission rate of total PM kgPM s−1

�̂PM Area-normalized emission rate of total PM kgPM m−2 s−1

EFPM Particle mass emissions factor gPM kg biomass consumed−1

FC Mass fraction of carbon in the fuel gC kg biomass consumed−1

FL Fuel loading g biomass m−2

FRP Fire radiative power MW

H Plume vertical thickness m

MEE Particle mass extinction efficiency m2 g−1

��� Aircraft transect-average MEE m2 g−1
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